Long-term in vivo gene expression via delivery of PEI-DNA condensates from porous polymer scaffolds.
نویسندگان
چکیده
Nonviral delivery vectors are attractive for gene therapy approaches in tissue engineering, but suffer from low transfection efficiency and short-term gene expression. We hypothesized that the sustained delivery of poly(ethylenimine) (PEI)-condensed DNA from three-dimensional biodegradable scaffolds that encourage cell infiltration could greatly enhance gene expression. To test this hypothesis, a PEI-condensed plasmid encoding beta-galactosidase was incorporated into porous poly(lactide-co-glycolide) (PLG) scaffolds, using a gas foaming process. Four conditions were examined: condensed DNA and uncondensed DNA encapsulated into PLG scaffolds, blank scaffolds, and bolus delivery of condensed DNA in combination with implantation of PLG scaffolds. Implantation of scaffolds incorporating condensed beta-galactosidase plasmid into the subcutaneous tissue of rats resulted in a high level of gene expression for the entire 15-week duration of the experiment, as exemplified by extensive positive staining for beta-galactosidase gene expression observed on the exterior surface and throughout the cross-sections of the explanted scaffolds. No positive staining could be observed for the control conditions either on the exterior surface or in the cross-section at 8- and 15-week time points. In addition, a high percentage (55-60%) of cells within scaffolds incorporating condensed DNA at 15 weeks demonstrated expression of the DNA, confirming the sustained uptake and expression of the encapsulated plasmid DNA. Quantitative analysis of beta-galactosidase gene expression revealed that expression levels in scaffolds incorporating condensed DNA were one order of magnitude higher than those of other conditions at the 2- week time point and nearly two orders of magnitude higher than those of the control conditions at the 8- and 15-week time points. This study demonstrated that the sustained delivery of PEI-condensed plasmid DNA from PLG scaffolds led to an in vivo long-term and high level of gene expression, and this system may find application in areas such as bone tissue engineering.
منابع مشابه
Sustained transgene expression via citric acid-based polyester elastomers.
Polymeric scaffolds are an important tool in tissue engineering and gene delivery using porous scaffolds can be a viable approach to control tissue response. Herein we describe the use of a biodegradable polyester elastomer, poly(1,8-octanediol-co-citrate) (POC), as a substrate for plasmid immobilization and cellular transfection of colonizing cells. Plasmid (pDNA), either complexed with poly(e...
متن کاملEffective in vitro gene delivery to murine cancerous brain cells using carbon nanotube-polyethylenimine conjugates
Objective(s): Carbon nanotube (CNT) has been widely applied at molecular and cellular levels due to its exceptional properties. Studies based on conjugation of CNTs with biological molecules indicated that biological activity is preserved. Polyethylenimine (PEI) is explored in designing novel gene delivery vectors due to its ability to condense plasmid DNA through electrostatic attraction. In t...
متن کاملPreparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems
Tri-block poly (lactide) poly(ethylene glycol) poly(lactide) (PLA–PEG–PLA) copolymers are among the most attractive nano-carriers for gene delivery into mammalian cells, due to their biocompatibility and biodegradability properties. However, the low efficiency of the gene delivery by these copolymers is an obstacle to gene therapy. Here, we have investigated nanoparticles formulated using the p...
متن کاملPreparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems
Tri-block poly (lactide) poly(ethylene glycol) poly(lactide) (PLA–PEG–PLA) copolymers are among the most attractive nano-carriers for gene delivery into mammalian cells, due to their biocompatibility and biodegradability properties. However, the low efficiency of the gene delivery by these copolymers is an obstacle to gene therapy. Here, we have investigated nanoparticles formulated using the p...
متن کاملModified Polyethylenimine: Self Assemble Nanoparticle Forming Polymer for pDNA Delivery
Objective Polyethylenimine (PEI), a readily available synthetic polycation which has high transfection efficiency owing to its buffering capacity was introduced for transfection a few years ago. But it has been reported that PEI is cytotoxic in many cell lines. In this study, in order to enhance the transfection efficiency of 10 kDa PEI and reduce its toxicity, hydrophobic residues were grafte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human gene therapy
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2005